Übungen zur Vorlesung Theoretische Chemie I: Teil 1, Quantenmechanik (Modul A8)

Blatt 6

Aufgabe 15: Harmonischer Oszillator.

Die Schwingung eines ¹⁴N-¹⁶O-Moleküls kann grob als harmonischer Oszillator behandelt werden.

- 1. Die harmonische Kraftkonstante für das Molekül beträgt $D=1536~\mathrm{N/m}.$ Wie groß ist
 - (a) die Nullpunktsenergie in eV,
 - (b) die Anregungsenergie für einen $v=0 \rightarrow v=1$ Übergang im IR-Spektrum (in cm⁻¹) in der harmonischen Näherung?
- 2. Man sagt, dass die harmonische Näherung gut ist, falls $k_BT \ll \hbar\omega$. Bei welchen Temperaturen bräche diese demnach zusammen?
- 3. Die Intensität für einen Übergang $v=0 \rightarrow v=1$ im IR-Spektrum ist proportional zu

$$I_{10} \propto |\langle \psi_0 | \mu | \psi_1 \rangle|^2, \tag{1}$$

wobei $\psi_{0,1}$ harmonische Oszillatorfunktionen sind und μ das Dipolmoment $\mu(x)$ des Moleküls ist (nicht mit der reduzierten Masse verwechseln!). Beweisen Sie, dass der Übergang *verboten* ist, falls $\mu = \text{const.}$

Aufgabe 16: Anharmonischer Oszillator.

Das vibrierende OH-Radikal kann näherungsweise als Morse-Oszillator mit

$$V(x) = D_e[1 - e^{-\beta x}]^2$$
 (2)

beschrieben werden, mit $D_e = 5.43$ eV und $\beta = 2.25$ Å⁻¹.

- 1. Berechnen Sie die harmonisch genäherte Schwingungsfrequenz für OH und OD.
- 2. Berechnen Sie die Anharmonizitätskonstante x_e für OH und OD.
- 3. Berechnen Sie mit den Ergebnissen aus 1. und 2. die fundamentalen Schwingungsfrequenzen im IR-Spektrum für OH und OD, sowie die ersten Obertöne $(E_2 E_0)$.

4. Wie groß ist die *messbare* Dissoziationsenergie D_0 für OH bzw OD? Wie viele gebundene Zustände (mit $E_v < D_e$) gibt es für OH und OD?